Assessment Details

Type	2 Summative Exams
Conditions	60 Minutes in class, Tech Active.
Date	Week 5, Week 10

Achievement Standard

- apply knowledge of angle relationships and the sum of angles in a triangle to solve problems, giving reasons.
- use formulas for the areas of triangles and parallelograms and the volumes of rectangular and triangular prisms to solve problems.
- describe the relationships between the radius, diameter and circumference of a circle.
- classify polygons according to their features and create an algorithm designed to sort and classify shapes.
- represent objects two-dimensionally in different ways, describing the usefulness of these representations

Week	Curriculum Intent	Learning Advice
1	Topic 1: Triangles, Quadrilaterals and Angle Relations	
	ㅁ Recall that acute angles are smaller than 90°, obtuse angles are between 90° and 180°, a right angle is 90°, a straight angle/line is 180° and there are 360° in a revolution. Classify triangles as equilateral, isosceles or scalene, and as obtuse, acute or right angled.	Geometry Booklet Ex 1-3
2	ㅁ Understand that the internal angles in a triangle add up to 180° and thus find missing angles in triangles. \square Classify quadrilaterals as squares, rectangles, rhombuses, parallelograms, kites, trapeziums or irregular quadrilaterals \square Understand that the internal angles in a quadrilateral add up to 360° and thus find missing angles in quadrilaterals.	Ex 4-8
3	\square Identify corresponding, alternate and co-interior angles that are formed when two parallel lines are crossed by a transversal Use angle relations to solve problems	Ex 9-11
4	\square Solve more complex problems involving angle relationships, triangles and quadrilaterals	Ex 12-13 Diagnostic Test
5	Summative Exam \#1 - Geometry (first or second lesson of the week) (20% of Semester grade)	
	Topic 2: Measurement	
	ㅁ Find the perimeter of shapes ㅁ Use the formula $A=L \times W$ to find the area of a rectangles	Measurement Booklet Ex 1-2
6	Use the formula $A=b$ \qquad $\times h$ to find the area of a triangle 2 Use the formula $A=b \times h$ to find the area of a parallelogram \square Solve mixed area problems	Ex 3-5
7	Use the formula $V=L \times W \times H$ to find the volume of a rectangular prism Use the formula $V=$ \qquad $b \times h 1 \times h 2$) to find the volume of a triangular prism Use the formula $V=$ Area of base \times Height of prism to find the volume of prisms generally	Ex 6-9
8	\square Solve problems involving the area and volume of shapes and objects Identify the radius and diameter of a circle Understand that the radius of a circle is half the length of its diameter, and the diameter of a circle is two times the length of its radius Understand that the number π, which is approximately 3.14 , is used to find a circle's circumference given its diameter or radius, such that Circumference $=\pi D$ and Circumference $=2 \pi r$	Ex 10-12 Diagnostic Test
9	Topic 3: Representing 3 dimensional objects 2 dimensionally	

	\square	Creating nets of cubes, rectangular prisms and triangular prisms	Ex 13
	\square	Drawing the top view, front view and side views of objects	
	\square	Drawing isometric projections of rectangular prisms	
\square	Describing the usefulness of each of these representations		
10	\square Summative Exam on Topics 2 and $3(20 \%$ of Semester Grade $)$		

Assessment Details

Type	Two Summative Exams
Conditions	60 Minutes in class, Tech Active.
Date	Week 6, Week 10

Achievement Standard

- Solve problems involving the four operations with integers
- Apply the exponent laws to calculations with numbers involving positive integer exponents
- Apply algebraic properties to rearrange, expand and factorise linear expressions
- Students solve linear equations with rational solutions and one-variable inequalities, graphically and algebraically

Week	Curriculum Intent	Learning Advice
1	Topic 1 - Integer Operations	
	\square Add and Subtract Integers (review from year 7) eg. $-3--2 ;-6+-4$ \square Multiplication with negative numbers \square Division with negative numbers	Yr 8 Booklet \#1 Exercises 1-3
2	Topic 2 - Index Laws	
	Recall the vocabulary of index notation: 'base' and 'index' / 'exponent' / 'power' Recall that $5^{3}=5 \times 5 \times 5$ and convert expressions between index notation and expanded notation Use a calculator to find the value of expressions in index notation \square Apply the rules of integer multiplication to deduce that a negative number raised to an odd power will be negative, but when raised to an even power will be positive. \square Apply the first index law to numeric expressions: $a^{m} \times a^{n}=a^{m+n}$. "The bases are the same, we are multiplying the terms, so we add the indices." $5^{6} \times 5^{4}=$ 510	Exercises 4-6
3	\square Apply the second index law to numeric expressions: $a^{m} \div a^{n}=a^{m-n}$. "The bases are the same, we are dividing the terms, so we subtract the indices." $5^{6} \div 5^{4}=5^{2}$ Apply the third index law to numeric expressions: $\left(a^{m}\right)^{n}=a^{m \times n}$. "Raising a power to a power, we multiply the indices" $\left(5^{6}\right)^{2}=5^{12}$ Apply the fourth index law to numeric expressions: $a^{0}=1$. "Anything to the power of zero is one" $5^{0}=1$ Simplify expressions combining index laws Extend the index laws to algebraic expressions*** [Extension]	Exercises 7-9 ***Exercise 10 Diagnostic Test
4	Topic 3 - Algebra	

	Simplify algebraic expressions involving the four operations \square Collect like terms to simplify expressions involving addition and subtraction. eg. $3 a+4 b-a+c+5 b+3$ \square Recall that x, x^{2} and x^{3} are not like terms and cannot be collected \square Simplify expressions involving multiplication and division of algebraic terms	Exercises 11-13
5	Expand and factorise linear expressions Expand brackets eg. $5(2 x+3)=10 x+15,5(2 x-3)=10 x-15$ Expand brackets involving negatives eg. $-5(2 x+3),-5(2 x-3),-5(-2 x+3)$ etc. Factorise linear expressions eg. $10 x+15=5(2 x+3)$	Exercises 14-17
6	Revise Topics 1-3 Summative Exam	Exercises 18-19 Summative Exam
7	Topic 4 - Linear Equations and Inequalities Solve linear equations \square Solve one step linear equations, using inverse operations : \square Solve two step linear equations using inverse operations.	Yr 8 Booklet \#2 Exercises 1-3
8	\square Solve linear equations involving brackets. For example: \quad Solve	Exercises 4-5 Diagnostic Test
9	Solve and graph linear inequations Understand the inequality symbols $\begin{array}{cccc}< & \leq & > & \geq \\ \text { Smaller than } & \text { Smaller than or equal to } & \text { Greater than } & \text { Greater than or equal to }\end{array}$ Use inverse operations to solve linear equalities algebraically. [Note: only use positive coefficients of $x]$. Graph the solution on a simple number line. Solve more complex equations*** Revise Topic 4	Exercises 6-7***
10	\square Summative Exam	Summative Exam

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Year 8 Advanced Mathematics \\
Term 1, 2024
\end{tabular} \& \begin{tabular}{l}
Trinity Bay SHS Hoare Street PO Box 5071 \\
Phone: 40375222 \\
tybayshs.eq.edu.au
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Assessment Details} \\
\hline Type \& \& \multicolumn{2}{|l|}{Summative Exam in two parts} \\
\hline Condit \& ions \& \multicolumn{2}{|l|}{50 minutes for each paper. Paper 1- Tech Free, Paper 2 -Tech active.} \\
\hline Date \& \& \multicolumn{2}{|l|}{Week 10} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Achievement Standard \\
- Solve problems involving the four operations with integers \\
- Apply the exponent laws to calculations with numbers involving positive integer exponents \\
- Apply algebraic properties to rearrange, expand and factorise linear expressions \\
- Students solve linear equations with rational solutions and one-variable inequalities, graphically and algebraically.
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Week Curriculum Intent} \& Learning Advice \\
\hline \multirow[t]{2}{*}{1} \& \multicolumn{3}{|l|}{Topic 1 - Integer Operations} \\
\hline \& \multicolumn{2}{|l|}{\(\square\) Review adding and subtracting integers eg. \(-3--2 ;-6+-4\)
Understand \(a-b=-b+a\) and \(-a-b=-1(a+b)\)
Multiply integers eg. \(-3 \times 2,-3 \times-2,2 \times-3\)
Divide integers eg. \(\frac{-8}{2}, \frac{8}{-2}, \frac{-2}{-8},-8 \div 2\).
Apply the rules of integer multiplication to deduce that a negative number raised to an odd power will be negative, but positive when raised to an even power} \& \begin{tabular}{l}
1E \\
1F \\
1G \\
1H
\end{tabular} \\
\hline \multirow[t]{2}{*}{2} \& \multicolumn{3}{|l|}{Topic 2 - Algebra} \\
\hline \& \& \begin{tabular}{l}
t like terms to simplify expressions involving addition and subtraction. \(4 b-a+c+5 b+3\) \\
that \(x, x^{2}\) and \(x^{3}\) are not like terms and cannot be collected fy expressions involving multiplication/division of terms and distinguish rocess from addition eg. \(3 a \times 5,3 a \times 5 a, 3 \times-5 a, 3 a \times 5 b,-3 a \times 2 a b, \frac{9 a}{3 a}, \frac{9 a}{3}, \frac{9 a b}{-3 b}\)
\end{tabular} \& \(5 C\)
\(5 D\) \\
\hline 3 \& \& \begin{tabular}{l}
d brackets eg. \(5(2 x+3)=10 x+15,5(2 x-3)=10 x-15\) \\
d brackets involving negatives eg. \(-5(2 x+3),-5(2 x-3),-5(-2 x+3)\) d brackets and simplify expressions eg. \(5(3 x-2)+7 x-2(4 x-3)+8\) ding simple binomial expressions using FOIL ise linear expressions eg. \(10 x+15=5(2 x+3)\)
\end{tabular} \& 5 G

5 H

\hline 4 \& \& Index Laws \&

\hline \& \& | the vocabulary of index notation: 'base' and 'index' / 'exponent' / 'power' the first 15 square numbers, the powers of 2 up to 2^{8} and the powers of 3 , 5 up to $3^{4}, 4^{4}$ and 5^{4}. the first index law to numeric expressions: $a^{m} \times a^{n}=a^{m+n}$. "The bases e same, we are multiplying the terms, so we add the indices." |
| :--- |
| d the first index law to algebraic expressions and use it to expand and fy non-linear expressions |
| the correct method to use to simplify a range of algebraic expressions, ing addition, subtraction, multiplication and indices. | \& 5J

\hline
\end{tabular}

5	\square Apply the second index law to numeric and algebraic expressions: $a^{m} \div a^{n}=$ a^{m-n}. "The bases are the same, we are dividing the terms, so we subtract the indices." $5^{6} \div 5^{4}=5^{2}$ \square Apply the third index law to numeric and algebraic expressions: $\left(a^{m}\right)^{n}=a^{m \times n}$. "Raising a power to a power, we multiply the indices" $\left(5^{6}\right)^{2}=5^{12}$ \square Apply the fourth index law to numeric and algebraic expressions: $a^{0}=1$. "Anything to the power of zero is one" $5^{0}=1$ Simplify expressions combining index laws	5J 5K 5K
6	\square Use the third index law to change the base of numeric expressions. For example $125^{4}=\left(5^{3}\right)^{4}=5^{12}, 8^{2}=\left(2^{3}\right)^{2}=2^{6}$ \square Use the third index law to solve problems involving powers of 2,3 or 5. For example: Express $\left(\frac{64^{3}}{128^{2}} \times 256^{7}\right)^{10}$ as a power of 2 . Solve indicial equations. For example: $25^{x} \times 125^{3}=625^{5}$	Worksheet
7	Topic 4 - Linear Equations and Inequalities	
	Solve linear equations Solve two step linear equations using inverse operations. Solve linear equations involving brackets or sets of brackets. Solve linear equations with pronumerals on both sides. For example $5 x-2=3(10 x+11)$ Solve complex linear equations. For example:	7B, 7C 7E7D
8	\square Solve a range of complex, multi-step equations with rational solutions, clearly showing mathematical reasoning through visible, logical setting out. Solve and graph linear inequations \square Understand the inequality symbols $\underset{\text { Smaller than }}{<} \quad \underset{\text { Smaller than or equal to }}{\leq} \quad \underset{\text { Greater than }}{>} \quad$ Greater than or equal to \square Use inverse operations to solve linear equalities algebraically. [Note: only use positive coefficients of x]. Graph the solution on a simple number line.	7I 7J
9	Revise Topics 1-4	
10	\square Summative Exam	Summative Exam

Year 9 Mathematics

Assessment Details

Type	Diagnostic Quiz
Conditions	In class, Tech Active ... Calculator required ... Casio fx-82AU recommended
Date	Week 6
Type	Summative Exam
Conditions	70 Minutes in class, Tech Active ... Calculator required ... Casio fx-82AU recommended
Date	Week 10
Achievement Standard	

Achievement Standard
9AS7 - Apply the index laws to numbers and express numbers in scientific notation.
9AS11 - Calculate areas of shapes and the volume and surface area of right prisms and cylinders.
9AS8 - Expand binomial expressions.

\begin{tabular}{|c|c|c|}
\hline Week \& Curriculum Intent \& Learning Advice \\
\hline \& Topic 1: Measurement \& Geometry - Using Units of Measurement \& Tech Active Topic \\
\hline \begin{tabular}{|c}
\(1-2\) \\
\\
\\
9AS11
\end{tabular} \& \begin{tabular}{l}
\(\square\) Recall units of measurement \\
\(\square\) Convert units of measurement for length, area, volume and capacity \\
\(\square\) Understand the connection between the first index law and square units used for area calculations and cubic units used for volume calculations \\
- Calculate area of simple shapes \\
ㅁ Calculate area of circles and semi-circles \\
\(\square\) Understand that partitioning composite shapes into simple shapes is a strategy for solving problems involving area \\
\(\square\) Calculate area of composite shapes \\
\(\square\) Calculate the area of sectors
\end{tabular} \& \begin{tabular}{l}
Chapter 9 p 471 (JAC) \\
Ex \(9.2 \mathrm{p} 481 \mathrm{Q} 1,2\) \\
Ex 9.3 p 483 Q 1-3 \\
Ex 9.7 p 517 Q 1-3 \\
Ex 9.8 p 526 Q 1, 9 \\
Ex 9.1 p 473 Q 1-15 \\
Ex 9.4 p 495 Q 1-12, 13 15
\end{tabular} \\
\hline \(3-4\)

9 9S11 \& \square Analyse nets of right prisms and cylinders to establish formulas for surface area, SA (total surface area, TSA)
Solve problems using formulas for surface area of right prisms and cylinders
Calculate volume of right prisms and cylinders
Connect volume of right prisms and cylinders to capacity to solve problems

Solve problems involving surface area, volume and capacity for compound shapes (3D) \& | Chapter 9471 (JAC) |
| :--- |
| Ex 9.5 p501 Q 1-8, 10 - |
| 13 |
| Ex 9.6 p508 Q 1-12, 20 |

\hline
\end{tabular}

	\square Diagnostic Quiz	$\begin{aligned} & \text { Ex 9.7 p } 512 \text { Q 1-10, } \\ & \text { 16. 20-21 } \end{aligned}$
5-6	Topic 1c: Number \& Algebra - Patterns \& Algebra	Tech Free / Active
9AS7	Consolidate Simple Interest Recall the index laws to simplify expressions, - $a^{m} \times a^{n}=a^{m+n}$ - $a^{m} \div a^{n}=a^{m-n}, \quad \frac{a^{m}}{a^{n}}=a^{m-n}$ - $\left(a^{m}\right)^{n}=a^{m \times n}$ - $a^{0}=1$ Simplify expressions using the negative index law, - $a^{-\mathrm{m}}=\frac{1}{a^{m}}, \quad \frac{1}{a^{-\mathrm{m}}}=a^{m}$ Express numbers in scientific notation	Chapter 1p15 (JAC) Ex 1.4 p 19 Q 1-17 Ex 1.5 p 24 Q 1-13, 15, 22, 23a,b Ex 1.6 p 30 Q 2-16 Ex 1.7 p 35 Q 1-5, 8-11 13-18, 23-25
7	\square Simplify expressions using square and cubed roots, $\sqrt{x}=x^{\frac{1}{2}}, \quad \sqrt[3]{x}=x^{\frac{1}{3}}$ Consolidate Index Laws Recall collecting like terms Recall rearranging and simplifying algebraic expressions	Chapter 1p 15 (JAC) Ex 1.8 p 39 Q 1-6, 10 Ex 1.10p57 Q 7-20 Chapter 2p84 (JAC) Ex 2.2 p 75 Q 10a,b, 11, 14-16
8 9AS8	\square Explore the area model to explain the Distributive Law (expanding brackets) Expand and simplify expressions with single brackets using the Distributive Law Expand and simplify expressions with multiple bracket using the Distributive Law, including FOIL (First, Outside, Inside, Last) Expand expressions using the identities (patterns), - Difference of Two Squares (DOTS), $(a+b)(a-b)=a^{2}-b^{2}$ - Perfect Squares (PS+, PS-), $(a+b)^{2}=a^{2}+2 a b+b^{2}, \quad(a-b)^{2}=a^{2}-2 a b+b^{2}$	Chapter 2p 84 (JAC) Ex 2.4 p 87 Q 1-18, 23, 29 Ex 2.5 p 96 Q 3-17 Ex 2.5 p 96 Q 18-27,29 Ex 2.6 p 102 Q 1-13
9	- Catch-up Revision all topics for exam	Chapter Reviews_(IAC) 1,2,9
10	EXAM Exam feedback and reflection Goal setting for term 2	

