

Year 7 Maths

Term 1, 2024

PO Box 5071Hoare Street

www.trinitybayshs.eq.edu.auPhone: 40 375 222

Assessment Details				
Туре		2 Summative Exams		
Conditions		60 Minutes in class, Tech Active.		
Date Week 5, Week 10				
Achieve	ment Stand	dard		
 apply 	y knowledg	e of angle relationships and the sum of angles in a triangle to solve problems, giving reasons.		
• use f	ormulas for	r the areas of triangles and parallelograms and the volumes of rectangular and triangular prism	s to solve	
prob	lems.			
• desc	ribe the rela	ationships between the radius, diameter and circumference of a circle.		
 class 	ify polygon	is according to their features and create an algorithm designed to sort and classify shapes.		
 representation 	esent object	ts two-dimensionally in different ways, describing the usefulness of these representations		
147 1			. .	
week	Curricul	um intent	Learning	
1	Topic 1.	Triangles Auadrilatorals and Angle Belations	Muvice	
1		call that acute angles are smaller than 90° obtuse angles are between 90° and 190° a right	Coomotry	
	ang	ple is 90°, a straight angle/line is 180° and there are 360° in a revolution.	Booklet	
		issify triangles as equilateral isosceles or scalene and as obtuse acute or right angled	Ex 1-3	
2		derstand that the internal angles in a triangle add up to 180° and thus find missing angles in	Ex 4-8	
	tria	angles.		
	Cla	issify quadrilaterals as squares, rectangles, rhombuses, parallelograms, kites, trapeziums or egular quadrilaterals		
		derstand that the internal angles in a quadrilateral add up to 360° and thus find missing		
3		entify corresponding, alternate and co-interior angles that are formed when two parallel lines	Ex 9-11	
-	are	e crossed by a transversal		
	🗆 Use	e angle relations to solve problems		
4	□ Solve	e more complex problems involving angle relationships, triangles and quadrilaterals	Ex 12-13 Diagnostic Test	
5	Summati	ve Exam #1 - Geometry (first or second lesson of the week) (20% of Semester grade)	1	
	Topic 2: I	Measurement		
	🗆 Fin	nd the perimeter of shapes	Measurement	
	🗆 Use	e the formula $A = L \times W$ to find the area of a rectangles	Booklet Ex 1-2	
6		Use the formula $A = b_{\underline{x}h}$ to find the area of a triangle	Ex 3-5	
	area pro	Use the formula $A = b \times h$ to find the area of a parallelogram \Box Solve mixed oblems		
7		e the formula $V = L \times W \times H$ to find the volume of a rectangular prism	Ex 6-9	
	🗆 Use	e the formula $V = (_\{b \times h_1 \times h_2})$ to find the volume of a triangular prism		
	🗆 Use	e the formula $V = Area of base \times Height of prism$ to find the volume of prisms generally		
8	□ Sol	lve problems involving the area and volume of shapes and objects	Ex 10-12	
	□ Ide	entify the radius and diameter of a circle	Diagnostic Test	
	Un Un	derstand that the radius of a circle is half the length of its diameter, and the diameter of a cle is two times the length of its radius		
	🗆 Un	derstand that the number π , which is approximately 3.14, is used to find a circle's		
	cir	cumference given its diameter or radius, such that <i>Circumference</i> $= \pi D$ and		
	Circum	$ference = 2\pi r$		
9	Topic 3: l	Representing 3 dimensional objects 2 dimensionally		

 Drawing the top view, front view and side views of objects Drawing isometric projections of rectangular prisms Describing the usefulness of each of these representations 	
 Drawing isometric projections of rectangular prisms Describing the useful age of each of these representations 	
Describing the useful and of each of these representations	
Describing the usefulness of each of these representations	
Revision of Topic 2 and Topic 3	
10 Summative Exam on Topics 2 and 3 (20% of Semester Grade)	

Year 8 General Mathematics

Trinity Bay SHS

Hoare Street

Term 1, 2024

Phone: 40 375 222PO Box 5071 www.trinitybayshs.eq.edu.au

Assessment Details					
Туре		Two Summative Exams			
Conditions		60 Minutes in class, Tech Active.			
Date Week 6, Week 10					
Achiev					
•	 Solve problems involving the four operations with integers Apply the exponent laws to calculations with numbers involving positive integer exp Apply algebraic properties to rearrange, expand and factorise linear expressions Students solve linear equations with rational solutions and one-variable inequalities algebraically. 				
Week	ek Curriculum Intent		Learning Advice		
1	То	pic 1 – Integer Operations			
		Add and Subtract Integers (review from year 7) $eg3 - 2; -6 + -4$	Yr 8 Booklet #1		
		Multiplication with negative numbers	Exercises 1-3		
		Division with negative numbers			
2	To	pic 2 – Index Laws			
		Recall the vocabulary of index notation: 'base' and 'index' / 'exponent' / 'power'	Exercises 4-6		
		Recall that $5^3 = 5 \times 5 \times 5$ and convert expressions between index notation and expanded notation			
		Use a calculator to find the value of expressions in index notation			
		Apply the rules of integer multiplication to deduce that a negative number raised to an odd power will be negative, but when raised to an even power will be positive.			
		Apply the first index law to numeric expressions: $a^m \times a^n = a^{m+n}$. "The bases			
		are the same, we are multiplying the terms, so we add the indices." $5^6 \times 5^4 =$			
		510			
3		Apply the second index law to numeric expressions: $a^m \div a^n = a^{m-n}$. "The bases	Exercises 7-9		
		are the same, we are dividing the terms, so we subtract the indices." $5^6 \div 5^4 = 5^2$	***Exercise 10		
		Apply the third index law to numeric expressions: $(a^m)^n = a^{m \times n}$. "Raising a			
		power to a power, we multiply the indices" $(5^6)^2 = 5^{12}$			
		Apply the fourth index law to numeric expressions: $a^0 = 1$. "Anything to the			
power of zero is		power of zero is one" $5^0 = 1$			
		Simplify expressions combining index laws	Diagnostic Test		
	Extend the index laws to algebraic expressions*** [Extension]				
4	То	pic 3 – Algebra			

	Simplify algebraic expressions involving the four operations	Exercises 11-13
	Collect like terms to simplify expressions involving addition and subtraction. eg. 3a + 4b - a + c + 5b + 3	
	□ Recall that x , x^2 and x^3 are not like terms and cannot be collected	
	□ Simplify expressions involving multiplication and division of algebraic terms	
5	Expand and factorise linear expressions	Exercises 14-17
	Expand brackets <i>eg.</i> $5(2x + 3) = 10x + 15$, $5(2x - 3) = 10x - 15$	
	$\square Expand brackets involving negatives eg5(2x + 3), -5(2x - 3), -5(-2x + 3) etc.$	
	G Factorise linear expressions $eg. 10x + 15 = 5(2x + 3)$	
6	Revise Topics 1-3	Exercises 18-19
	□ Summative Exam	Summative Exam
7	Topic 4 – Linear Equations and Inequalities	
	Solve linear equations	Yr 8 Booklet #2
	□ Solve one step linear equations, using inverse operations :	
	□ Solve two step linear equations using inverse operations.	Exercises 1-3
8	□ Solve linear equations involving brackets. For example:	Exercises 4-5
	Solve	
	linear equatios with non-integer solutions. For example:	
		Diagnostic Test
9	Solve and graph linear inequations	Exercises 6-7***
	Understand the inequality symbols	
	Smaller than Smaller than or equal to Greater than Greater than or equal to	
	□ Use inverse operations to solve linear equalities algebraically. [Note: only use	
	positive coefficients of <i>x</i>]. Graph the solution on a simple number line.	
	□ Solve more complex equations***	
	Revise Topic 4	
10	□ Summative Exam	Summative
		Exam

Year 8 Advanced Mathematics

Term 1, 2024

Assessment Details					
Туре		Summative Exam in two parts			
Conditions		50 minutes for each paper. Paper 1- Tech Free, Paper 2 -Tech active.			
Date Week 10					
Achiev	Achievement Standard				
• • • Week	Solve pro Apply the Apply algo Students s and algeb Curricul	blems involving the four operations with integers exponent laws to calculations with numbers involving positive integer expon- ebraic properties to rearrange, expand and factorise linear expressions solve linear equations with rational solutions and one-variable inequalities, gr raically. um Intent	ents raphically Learning Advice		
1	Topic 1 -	- Integer Operations			
	□ Revie	we adding and subtracting integers $e_{g,-3} - 2$; $-6 + -4$ erstand $a - b = -b + a$ and $-a - b = -1(a + b)$	1E 1F		
	Divid	le integers $eg. \frac{-8}{2}, \frac{8}{-2}, \frac{-2}{-8}, -8 \div 2.$	1G		
	□ Apply to an	y the rules of integer multiplication to deduce that a negative number raised odd power will be negative, but positive when raised to an even power	1H		
2	Topic 2 ·	- Algebra			
	\Box Collected control $eg.3a + \Box$	ct like terms to simplify expressions involving addition and subtraction. + $4b - a + c + 5b + 3$	5C		
	□ Simpl this p	lify expressions involving multiplication/division of terms and distinguish rocess from addition $eg.3a \times 5$, $3a \times 5a$, $3 \times -5a$, $3a \times 5b$, $-3a \times 2ab$, $\frac{9a}{3a}$, $\frac{9ab}{-3b}$	5D		
3	 Expar Expar Expar Expar Expar Facto 	nd brackets $eg. 5(2x + 3) = 10x + 15$, $5(2x - 3) = 10x - 15$ nd brackets involving negatives $eg5(2x + 3)$, $-5(2x - 3)$, $-5(-2x + 3)$ nd brackets and simplify expressions $eg. 5(3x - 2) + 7x - 2(4x - 3) + 8$ nding simple binomial expressions using FOIL rise linear expressions $eg. 10x + 15 = 5(2x + 3)$	5G 5H		
4	Topic 3 ·	- Index Laws			
	 Recal Recal 4 and Apply are th Exten 	I the vocabulary of index notation: 'base' and 'index' / 'exponent' / 'power' I the first 15 square numbers, the powers of 2 up to 2^8 and the powers of 3, 5 up to 3^4 , 4^4 and 5^4 . The first index law to numeric expressions: $a^m \times a^n = a^{m+n}$. "The bases we are multiplying the terms, so we add the indices." Indet the first index law to algebraic expressions and use it to expand and if a non-linear expressions	5]		
	Simpl Select involv	t the correct method to use to simplify a range of algebraic expressions, ving addition, subtraction, multiplication and indices.			

5	 Apply the second index law to numeric and algebraic expressions: a^m ÷ aⁿ = a^{m-n}. "The bases are the same, we are dividing the terms, so we subtract the indices." 5⁶ ÷ 5⁴ = 5² Apply the third index law to numeric and algebraic expressions: (a^m)ⁿ = a^{m×n}. "Raising a power to a power, we multiply the indices" (5⁶)² = 5¹² Apply the fourth index law to numeric and algebraic expressions: a⁰ = 1. "Anything to the power of zero is one" 5⁰ = 1 Simplify expressions combining index laws 	5J 5K 5K
6	Use the third index law to change the base of numeric expressions. For example $125^4 = (5^3)^4 = 5^{12}$, $8^2 = (2^3)^2 = 2^6$	Worksheet
	\Box Use the third index law to solve problems involving powers of 2,3 or 5.	
	For example: Express $\left(\frac{64^3}{128^2} \times 256^7\right)^{-1}$ as a power of 2.	
7	$\Box Solve indicial equations. For example: 25^x \times 125^3 = 625^3$	
/	Topic 4 – Linear Equations and inequalities	
	Solve linear equations	7B, 7C
	Solve two step linear equations using inverse operations.	
	 Solve linear equations involving brackets or sets of brackets. Solve linear equations with pronumerals on both sides. For example 5x - 2 = 3(10x + 11) Solve complex linear equations. For example: 	7E7D
8	Solve a range of complex, multi-step equations with rational solutions, clearly showing mathematical reasoning through visible, logical setting out.	
	Solve and graph linear inequations	
	□ Understand the inequality symbols $< \leq > \ge$ Smaller than Smaller than or equal to Greater than Greater than or equal to □ Use inverse operations to solve linear equalities algebraically. [Note: only use positive coefficients of <i>x</i>]. Graph the solution on a simple number line.	71
		7J
9	Revise Topics 1-4	
10	□ Summative Exam	Summative Exam

Year 9 Mathematics

Term 1, 2024

Assessment Details

Assessment Details					
Type		Summative Exam			
Conditions		60 minutes in class			
Date		Week 10			
Achiev	emen	t Standard			
	Stud	ents calculate areas of shapes and the volume and surface area of right prisms and cvi	inders		
	 Students calculate areas of snapes and the volume and surface area of right prisms and cylind Students apply the index laws to numbers and express numbers in scientific notation 				
•	They	v expand binomial expressions.			
Week	Cur	riculum Intent	Learning Advice		
1	Top	ic 1: Area, volume and surface area	_		
		Preliminary skill: Rounding decimals to 2 decimal places	Exercises 1-3		
		Identify the following shapes: rectangle, triangle, parallelogram, trapezium, circle	5D		
		Recall that area is the number of souares of space inside a 2D shape	5E		
		Use formulas to find the areas of the above shapes			
2		Finding the area of composite shapes**	Exercises 4-6		
		Identify the following 3D objects: cylinder, rectangular prism, triangular prism	5 H		
		Recall that volume is the number of cubes of space inside an object	51		
		Find the volume of cylinders, rectangular prisms and triangular prisms			
3		Establish that surface area is the total area of all faces of a 3D shave	Exercises 7-9		
		Find the surface area of rectangular prisms and cylinders	5 F		
		Extra practice finding the area, volume and/or surface area of 2D shapes and 3D	5 G		
		objects			
4		Diagnostic Test			
-	Top	ic 2: Applying index laws to numbers	1		
		Recall the vocabulary of index notation: 'base' and 'index' / 'exponent' / 'power'	Exercises 10-11		
		Recall that $5^3 = 5 \times 5 \times 5$ and convert expressions between index notation and	6A		
		expanded notation	6B		
		Use a calculator to find the value of expressions in index notation			
		Apply the first index law to numeric expressions: $a^m \times a^n = a^{m+n}$. "The bases are			
	-	the same, we are multiplying the terms, so we add the indices," $5^6 \times 5^4 = 5^{10}$			
5		Apply the second index law to numeric expressions: $a^m \div a^n = a^{m-n}$. "The bases	Exercises 12-14		
_	-	are the same, we are dividing the terms, so we subtract the indices." $5^6 \div 5^4 = 5^2$	60		
		Apply the third index law to numeric expressions: $(a^m)^n = a^{m \times n}$. "Raising a power	6D		
		to a power, we multiply the indices" $(5^6)^2 = 5^{12}$	6E		
		Apply the fourth index law to numeric expressions: $e^{-m} = \frac{1}{2}$ "Notative non-			
		Apply the fourth index law to numeric expressions: $a^{-1} = \frac{1}{a^{m}}$. Regative powers			
		say 'flip''' $5^{-6} = \frac{1}{5^6}$			
6		Convert values to and from scientific notation using a calculator	Exercises 15-16		
		Diagnostic Test	6F		
		Revise measurement			
7	Тор	ic 3: Expanding binomial expressions			
		Recall collecting like terms: $5a^2 + 3a + 7a + 3 = 5a^2 + 10a + 3$	Exercises 17-21		
		Recall multiplying algebraic terms: $5a \times a = 5a^2$, $5a \times 3 = 15a$, $5a \times 3a = 15a^2$	2A		
		Use FOIL (first, outside, inside, last) to expand binomial expressions:	2B		
		(3x + 2)(5x + 4)	2C		
		$= 15x^{2} + 12x + 10x + 8$			
		$= 15x^{2} + 22x + 8$			
8-9		Expanding binomial expressions with negative numbers**	Exercises 22-24		
		Revision of all term 1 topics			
10		Summative exam and celebration of achievement			

Year 9 Advanced Mathematics Term 1, 2024

Trinity Bay SHS Hoare Street PO Box 5071 Phone: 40 375 222 www.trinitybayshs.eq.edu.au

Assessment Details				
Type Diagnostic Quiz				
Conditions		In class, Tech Active Calculator required Casio fx-82AU recomm	nended	
Date Week 6				
Туре		Summative Exam		
Conditions 70 Minutes in class, Tech Active Calculator required Casio fx-82AU received		AU recommended		
Date	Date Week 10			
Achievem	ent Sta	andard		
<mark>9AS7 -</mark> App	ly the	index laws to numbers and express numbers in scientific notation.		
<mark>9AS11 -</mark> Ca	lculat	e areas of shapes and the volume and surface area of right prisms and c	ylinders.	
<mark>9AS8 -</mark> Exp	and bi	nomial expressions.		
Week	Curr	iculum Intent	Learning Advice	
		Topic 1: Measurement & Geometry – Using Units of Measurement	Tech Active Topic	
		Recall units of measurement	Chapter 9 p 471 <mark>(JAC)</mark>	
1-2		Understand the connection between the first index law and square	Ex 9.2 p 481 Q 1,2	
		units used for area calculations and cubic units used for volume	Ex 9.3 p 483 Q 1-3	
		calculations Calculate area of simple shapes	Ex 9.7 p 517 Q 1-3	
		Calculate area of circles and semi-circles	Ex 9.8 p 526 Q 1, 9	
<mark>9AS11</mark>		Understand that partitioning composite shapes into simple shapes is a strategy for solving problems involving area	Ex 9.1 p 473 Q 1-15	
		Calculate area of composite shapes	Ex 9.4 p 495 Q 1-12, 13 -	
		Calculate the area of sectors	15	
3-4		Analyse nets of right prisms and cylinders to establish formulas for	Chapter 9 471 <mark>(JAC)</mark>	
	п	surface area, SA (total surface area, TSA)		
		cylinders	Ex 9.5 p501 Q 1-8, 10 –	
0 \ C 1 1		Calculate volume of right prisms and cylinders	13	
JAJII		Connect volume of right prisms and cylinders to capacity to solve	Ex 9.6 p508 O 1-12, 20	
	-	problems		
		solve problems involving surface area, volume and capacity for compound shapes (3D)		

	Diagnostic Quiz	Ex 9.7 p 512 Q 1 – 10,
		16. 20 - 21
5-6	Topic 1c: Number & Algebra – Patterns & Algebra	Tech Free / Active
	Consolidate Simple Interest	
	Recall the index laws to simplify expressions,	Chapter 1 p 15 (IAC)
	• $a^m \times a^n = a^{m+n}$	<u> </u>
9AS7	• $a^m \div a^n = a^{m-n}$, $\frac{a^n}{a^n} = a^{m-n}$	Ex 1.4 p 19 Q 1-17
	• $(a^m)^n = a^{m \times n}$	Ex 1.5 p 24 Q 1-13, 15,
	• $a^0 = 1$	22, 23a,b
	\square Simplify expressions using the negative index law, $-m \qquad 1 \qquad 1 \qquad m$	Ex 1.6 p 30 Q 2-16
	• $a^{-m} = \frac{1}{a^m}$, $\frac{1}{a^{-m}} = a^m$	
	Everess numbers in scientific notation	
		Ex 1.7 p 35 Q 1-5, 8-11
		13-18, 23-25
7	□ Simplify expressions using square and cubed roots,	Chapter 1 p 15 <mark>(JAC)</mark>
	$\Box \sqrt{x} = x^{\frac{1}{2}} , \sqrt[3]{x} = x^{\frac{1}{3}}$	Ex 1.8 p 39 Q 1-6, 10
	Consolidate Index Laws	Fx 1.10 n 57 O 7 - 20
	Recall collecting like terms Recall rearranging and simplifying algebraic expressions	
		<u>Chapter 2 p 84 (JAC)</u>
		Ex 2.2 p 75 Q 10a,b, 11,
		14-16
8	Explore the area model to explain the Distributive Law (expanding	Chapter 2 p 84 (JAC)
	brackets)	Ex 2.4 p 87 Q 1-18, 23,
0459	Expand and simplify expressions with single brackets using the Distributive Law	29
9430	 Expand and simplify expressions with multiple bracket using the 	Ex 2.5 p 96 Q 3-17
	Distributive Law, including FOIL (First, Outside, Inside, Last)	Ex 2.5 p 96 Q 18-27,29
	 Difference of Two Squares (DOTS) 	Fx 2 6 n 102 O 1-13
	$(a+b)(a-b) = a^2 - b^2$	
	• Perfect Squares (PS+, PS-),	
	$(a+b)^2 = a^2 + 2ab + b^2$, $(a-b)^2 = a^2 - 2ab + b^2$	
9	Catch-up	
	Revision all topics for exam	Chapter Reviews (JAC)
		<mark>1</mark> ,2,9
10		
	Exam feedback and reflection	
	Goal setting for term 2	